

WYANDOTTE CREEK SUBBASIN GROUNDWATER SUSTAINABILITY PLAN PUBLIC WORKSHOP OCTOBER 20, 2021

Wyandotte Creek

Executive Summary

Chapter 1 -Agency Information, Plan Area, Communication

Chapter 2 - Basin Setting

Chapter 3 -Sustainable Management Criteria

Chapter 4 -Monitoring **Networks**

Chapter 5 - Project and Management Actions

Chapter 6 - Plan Implementation

GSP Outline Public Draft Final

WYANDOTTE CREEK GROUNDWATER SUSTAINABILITY AGENCY

CHAPTER 1 PLAN AREA

Plan Area

- One Groundwater Sustainability Agency
 - Wyandotte Creek GSA
- Two Management Areas
 - Wyandotte Creek Oroville
 - Wyandotte Creek South

CHAPTER 2 BASIN SETTING

CHAPTER 2 – BASIN SETTING HYDROGEOLOGIC CONCEPTUAL MODEL (HCM)

- What Will You Find
 - ❖ Basin Boundaries
 - Topography, Surface Water, and Recharge
 - *Regional Geologic and Structural Setting
 - Geologic Formations
 - Groundwater Producing Formations
 - Cross Sections
 - Key Geologic Features
 - Principal Aquifers and Aquitards
 - HCM Data Gaps

PRINCIPAL AQUIFERS AND AQUITARDS

- Single Principal Aquifer
 - Composed of Several Geologic Units
 - Large Paleo Valleys Former Channels of Feather River
 - Various Aquifer Zones
 - Leaky Aquifer System with Varied Hydraulic Connections
 - Varies From North to South

HCM DATA GAPS

Additional Monitoring to Increase Understanding of Aquifer

Further Assess Groundwater Recharge

- Expand Isotopic Analysis
- General Water Quality Analysis
- Recharge Rate

Additional AEM Data Collection

CHAPTER 2 – BASIN SETTING GROUNDWATER CONDITIONS

- What Will You Find
 - Description of Current and Historical Conditions
 - Groundwater Trends
 - Seawater Intrusion
 - Groundwater Quality
 - Land Subsidence
 - ❖Interconnected Surface Water
 - Groundwater Dependent Ecosystems

Groundwater Trends

- >Groundwater Flows from the North to South
- Since 2000 many areas have been stable, but some areas have shown some decreases in water level

POTENTIAL GROUNDWATER DEPENDENT ECOSYSTEMS

CHAPTER 2 – BASIN SETTING WATER BUDGET

- What Will You Find
 - Selection of Hydrologic Periods
 - Usage of Groundwater Model
 - Water Budget Assumptions
 - ❖Water Budget Estimates
 - Water Budget Uncertainty
 - Overdraft Conditions
 - Sustainable Yield Estimate
 - Recommended Next Steps

DECREASE IN STORAGE AND SUSTAINABLE YIELD

Sustainable Yield

"Maximum quantity of water, calculated over a base period representative of long-term conditions in the basin, and including any temporary surplus that can be withdrawn annually from a groundwater supply without causing an undesirable result."

Average Values From 2000 to 2018

CLARIFYING QUESTIONS

CHAPTER 3 SUSTAINABLE MANGEMENT CRITERIA

TRACKING
CONDITIONS TO
MAINTAIN
SUSTAINABILITY

SUSTAINABILITY GOAL

To ensure that groundwater is managed to provide a water supply of adequate quantity and quality to support beneficial users of groundwater including but not limited to rural areas and other communities, the agricultural economic base of the region, and environmental resource uses in the Subbasin now and in the future.

Land Subsidence

SUSTAINABILITY INDICATORS

Used to Characterize Groundwater Conditions Throughout the Subbasin

SUSTAINABLE MANAGEMENT CRITERIA

- Measurable Objective (MO)
 - Where We Want To Be
- Minimum Threshold (MT)
 - Point WhereUndesirable ResultsMay Start to Occur
- 20 Year Implementation Period

MEASURING SUSTAINABILITY - GROUNDWATER LEVELS

MO - Groundwater level based on the groundwater trend line for the dry periods (over the period of record) of observed short-term climatic cycles extended to 2030

MT – Protective of Sustainably Constructed Domestic Wells.

- Installed after 1980
- Constructed per County Well Standards
- Proxy For:

- MO USEPA Secondary Maximum Contaminant Level (MCL)
 900 µS/cm
- MT USEPA Upper Secondary MCL
 1,600 µS/cm
- Values below these levels are acceptable for drinking water use
- Reported Values in Wyandotte Creek Oroville significantly below MO
- South with values above 2,000 µS/cm in 1986 in one Well

CHAPTER 3 – SUSTAINABLE MANAGEMENT CRITERIA MEASURING SUSTAINABILITY - GROUNDWATER QUALITY

MEASURING SUSTAINABILITY INTERCONNECTED SURFACE WATERS

DATA GAP

- GSP Presents Framework to Develop SMCs
- Uses Groundwater Levels as Proxy Until Developed

CHAPTER 4 MONITORING NETWORKS

Wyandotte Creek GSA Wyandotte Creek Oroville Wyandotte Creek South

REPRESENTATIVE MONITORING SITES GROUNDWATER LEVELS

- Table 3.1 lists the MOs and MTs for Each RMS Well.
- Table 4.5 provides well construction details for each RMS Well.

21N02E18C001M 21N02E18C002M Wyandotte Creek GSA Wyandotte Creek Oroville Wyandotte Creek South

REPRESENTATIVE MONITORING SITES WATER QUALITY

- Table 3.2 lists the MOs and MTs for Each RMS Well.
- Table 4.7 provides well construction details for each RMS Well.

How Sustainability will be Maintained

CHAPTER 5 PROJECTS AND MANAGEMENT ACTIONS

Projects

15 Projects Identified 8 Planned 5 Potential

2 Conceptual

Management Actions

5 Management Actions Identified General Plan Updates Domestic Well Mitigation Well Permitting Ordinance Landscape Ordinance Expansion of Water Purveyors

PLANNED PROJECTS

Residential Water Conservation

- Implement a series of urban water conservation measures
- 100 AF/year

Agricultural Irrigation Efficiency

- Implement a voluntary program to adopt BMPs for irrigation
- > 4,000 AF/year

Flood MAR

- Utilize high flow water for direct recharge
- TBD AF/year

PLANNED PROJECTS

Oroville Wildlife Area Robinson's Riffle Project

- Restoration of wildlife area
- TBD AF/year

Streamflow Augmentation

- Utilize high flow waters to increase stream flow for use in-lieu of ground water
- 1,000 5,000 AF/year

TWSD Water Treatment Plant Capacity Upgrade

- Increased capacity of plant will reduce groundwater needs
- > 550+ AF/year

PLANNED PROJECTS

Water Loss Monitoring

- Water providers to implement programs to reduce water loss
- TBD AF/year

Palermo Clean Water Improvement Project

- SFWP to expand service area to Palermo
- TBD AF/year

POTENTIAL PROJECTS

Inter-Basin Water Transfer

Agricultural Surface Water Supplies

Well Upgrades

Fuel Management for Watershed Health

Removal of Invasive Species

CONCEPTUAL PROJECTS

Recharge Well

Extend Orchard Replacement

Schedule, Funding, and Reporting

Estimate of Costs

Funding Alternatives

Schedule

Data Management System

Annual Reporting

Evaluation Report

Interbasin Coordination

CHAPTER 6 IMPLEMENTATION

Administrative Costs

• \$100,000 - \$300,000/year

Monitoring

• \$20,000/year

Data Analysis

• \$10,000/year

Reporting and Evaluation

• \$30,000/year

Data Gaps

Projects and Management Actions

Existing funding and programs to minimize overlap

State and federal grants

Other funding mechanisms (i.e., Prop 218 or 26)

INTER-BASIN COORDINATION

Participate in on going coordination efforts with surrounding 10 basins

Norther-Valley Inter-basin Coordination

Provides a framework for coordination efforts

Discussions to determine GSA priorities

CLARIFYING QUESTIONS